Metrics
Metric
dataclass
Bases: BaseMetric
Semantic Segmentation Metric.
Attributes:
Name | Type | Description |
---|---|---|
type |
str
|
The metric type. |
value |
int | float | dict
|
The metric value. |
parameters |
dict[str, Any]
|
A dictionary containing metric parameters. |
Source code in valor_lite/semantic_segmentation/metric.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
accuracy(value)
classmethod
Accuracy metric computed over all labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
The accuracy value. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/semantic_segmentation/metric.py
confusion_matrix(confusion_matrix, unmatched_predictions, unmatched_ground_truths)
classmethod
The confusion matrix and related metrics for semantic segmentation tasks.
This class encapsulates detailed information about the model's performance, including correct predictions, misclassifications, unmatched_predictions (subset of false positives), and unmatched ground truths (subset of false negatives). It provides counts for each category to facilitate in-depth analysis.
Confusion Matrix Format:
{
Unmatched Predictions Format:
{
Unmatched Ground Truths Format:
{
Parameters:
Name | Type | Description | Default |
---|---|---|---|
confusion_matrix
|
dict
|
Nested dictionaries representing the Intersection over Union (IOU) scores for each ground truth label and prediction label pair. |
required |
unmatched_predictions
|
dict
|
Dictionary representing the pixel ratios for predicted labels that do not correspond to any ground truth labels (false positives). |
required |
unmatched_ground_truths
|
dict
|
Dictionary representing the pixel ratios for ground truth labels that were not predicted (false negatives). |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/semantic_segmentation/metric.py
f1_score(value, label)
classmethod
F1 score for a specific class label.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
The computed F1 score. |
required |
label
|
str
|
The label for which the F1 score is calculated. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/semantic_segmentation/metric.py
iou(value, label)
classmethod
Intersection over Union (IOU) ratio for a specific class label.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
The computed IOU ratio. |
required |
label
|
str
|
The label for which the IOU is calculated. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/semantic_segmentation/metric.py
mean_iou(value)
classmethod
Mean Intersection over Union (mIOU) ratio.
The mIOU value is computed by averaging IOU over all labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
The mIOU value. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/semantic_segmentation/metric.py
precision(value, label)
classmethod
Precision metric for a specific class label.
Precision is calulated using the number of true-positive pixels divided by the sum of all true-positive and false-positive pixels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
The computed precision value. |
required |
label
|
str
|
The label for which the precision is calculated. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/semantic_segmentation/metric.py
recall(value, label)
classmethod
Recall metric for a specific class label.
Recall is calulated using the number of true-positive pixels divided by the sum of all true-positive and false-negative pixels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
The computed recall value. |
required |
label
|
str
|
The label for which the recall is calculated. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|