Evaluation
Wraps valor.client.Job
to provide evaluation-specifc members.
Source code in valor/coretypes.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
Functions
valor.Evaluation.__init__(connection=None, **kwargs)
Defines important attributes of the API's EvaluationResult
.
Attributes:
Name | Type | Description |
---|---|---|
id |
int
|
The ID of the evaluation. |
dataset_names |
list[str]
|
The names of the datasets the model was evaluated over. |
model_name |
str
|
The name of the evaluated model. |
filters |
dict
|
The filter used to select data partitions for evaluation. |
status |
EvaluationStatus
|
The status of the evaluation. |
metrics |
List[dict]
|
A list of metric dictionaries returned by the job. |
confusion_matrices |
List[dict]
|
A list of confusion matrix dictionaries returned by the job. |
meta |
(dict[str, str | float | dict], optional)
|
A dictionary of metadata describing the evaluation run. |
Source code in valor/coretypes.py
valor.Evaluation.__str__()
valor.Evaluation.poll()
Poll the back end.
Updates the evaluation with the latest state from the back end.
Returns:
Type | Description |
---|---|
EvaluationStatus
|
The status of the evaluation. |
Raises:
Type | Description |
---|---|
ClientException
|
If an Evaluation with the given |
Source code in valor/coretypes.py
valor.Evaluation.to_dataframe(stratify_by=None)
Get all metrics associated with a Model and return them in a pd.DataFrame
.
Returns:
Type | Description |
---|---|
DataFrame
|
Evaluation metrics being displayed in a |
Raises:
Type | Description |
---|---|
ModuleNotFoundError
|
This function requires the use of |
Source code in valor/coretypes.py
valor.Evaluation.to_dict()
Defines how a valor.Evaluation
object is serialized into a dictionary.
Returns:
Type | Description |
---|---|
dict
|
A dictionary describing an evaluation. |
Source code in valor/coretypes.py
valor.Evaluation.wait_for_completion(*, timeout=None, interval=1.0)
Blocking function that waits for evaluation to finish.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
timeout
|
int
|
Length of timeout in seconds. |
None
|
interval
|
float
|
Polling interval in seconds. |
1.0
|