Metrics
Metric
dataclass
Bases: BaseMetric
Classification Metric.
Attributes:
Name | Type | Description |
---|---|---|
type |
str
|
The metric type. |
value |
int | float | dict
|
The metric value. |
parameters |
dict[str, Any]
|
A dictionary containing metric parameters. |
Source code in valor_lite/classification/metric.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
|
accuracy(value, score_threshold, hardmax)
classmethod
Multiclass accuracy metric.
This class calculates the accuracy at various score thresholds.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
Accuracy value computed at a specific score threshold. |
required |
score_threshold
|
float
|
Score threshold at which the accuracy value is computed. |
required |
hardmax
|
bool
|
Indicates whether hardmax thresholding was used. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/classification/metric.py
confusion_matrix(confusion_matrix, unmatched_ground_truths, score_threshold, maximum_number_of_examples)
classmethod
The confusion matrix and related metrics for the classification task.
This class encapsulates detailed information about the model's performance, including correct predictions, misclassifications, unmatched predictions (subset of false positives), and unmatched ground truths (subset of false negatives). It provides counts and examples for each category to facilitate in-depth analysis.
Confusion Matrix Structure: { ground_truth_label: { predicted_label: { 'count': int, 'examples': [ { 'datum': str, 'groundtruth': dict, # {'xmin': float, 'xmax': float, 'ymin': float, 'ymax': float} 'prediction': dict, # {'xmin': float, 'xmax': float, 'ymin': float, 'ymax': float} 'score': float, }, ... ], }, ... }, ... }
Unmatched Ground Truths Structure: { ground_truth_label: { 'count': int, 'examples': [ { 'datum': str, 'groundtruth': dict, # {'xmin': float, 'xmax': float, 'ymin': float, 'ymax': float} }, ... ], }, ... }
Parameters:
Name | Type | Description | Default |
---|---|---|---|
confusion_matrix
|
dict
|
A nested dictionary where the first key is the ground truth label value, the second key
is the prediction label value, and the innermost dictionary contains either a |
required |
unmatched_ground_truths
|
dict
|
A dictionary where each key is a ground truth label value for which the model failed to predict
(false negatives). The value is a dictionary containing either a |
required |
score_threshold
|
float
|
The confidence score threshold used to filter predictions. |
required |
maximum_number_of_examples
|
int
|
The maximum number of examples per element. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/classification/metric.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
|
counts(tp, fp, fn, tn, score_threshold, hardmax, label)
classmethod
Confusion matrix counts at specified score thresholds for binary classification.
This class stores the true positive (tp
), false positive (fp
), false negative (fn
), and true
negative (tn
) counts computed at various score thresholds for a binary classification task.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tp
|
int
|
True positive counts at each score threshold. |
required |
fp
|
int
|
False positive counts at each score threshold. |
required |
fn
|
int
|
False negative counts at each score threshold. |
required |
tn
|
int
|
True negative counts at each score threshold. |
required |
score_threshold
|
float
|
Score thresholds at which the counts are computed. |
required |
hardmax
|
bool
|
Indicates whether hardmax thresholding was used. |
required |
label
|
str
|
The class label for which the counts are computed. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/classification/metric.py
f1_score(value, score_threshold, hardmax, label)
classmethod
F1 score for a specific class label and confidence score threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
F1 score computed at a specific score threshold. |
required |
score_threshold
|
float
|
Score threshold at which the F1 score is computed. |
required |
hardmax
|
bool
|
Indicates whether hardmax thresholding was used. |
required |
label
|
str
|
The class label for which the F1 score is computed. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/classification/metric.py
mean_roc_auc(value)
classmethod
Mean Receiver Operating Characteristic Area Under the Curve (mROC AUC).
This class calculates the mean ROC AUC score over all classes in a multiclass classification task. It provides an aggregate measure of the model's ability to distinguish between classes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
The computed mean ROC AUC score. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/classification/metric.py
precision(value, score_threshold, hardmax, label)
classmethod
Precision metric for a specific class label.
This class calculates the precision at a specific score threshold. Precision is defined as the ratio of true positives to the sum of true positives and false positives.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
Precision value computed at a specific score threshold. |
required |
score_threshold
|
float
|
Score threshold at which the precision value is computed. |
required |
hardmax
|
bool
|
Indicates whether hardmax thresholding was used. |
required |
label
|
str
|
The class label for which the precision is computed. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/classification/metric.py
recall(value, score_threshold, hardmax, label)
classmethod
Recall metric for a specific class label.
This class calculates the recall at a specific score threshold. Recall is defined as the ratio of true positives to the sum of true positives and false negatives.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
Recall value computed at a specific score threshold. |
required |
score_threshold
|
float
|
Score threshold at which the recall value is computed. |
required |
hardmax
|
bool
|
Indicates whether hardmax thresholding was used. |
required |
label
|
str
|
The class label for which the recall is computed. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|
Source code in valor_lite/classification/metric.py
roc_auc(value, label)
classmethod
Receiver Operating Characteristic Area Under the Curve (ROC AUC).
This class calculates the ROC AUC score for a specific class label in a multiclass classification task. ROC AUC is a performance measurement for classification problems at various threshold settings. It reflects the ability of the classifier to distinguish between the positive and negative classes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
float
|
The computed ROC AUC score. |
required |
label
|
str
|
The class label for which the ROC AUC is computed. |
required |
Returns:
Type | Description |
---|---|
Metric
|
|